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The effect of sinusoidal protrusions on laminar free 
convection between vertical walls 
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The effects of sinusoidal protrusions on steady laminar free convection between 
vertical walls is investigated in this paper. Numerical results are presented for 
various values of the size and spacing of the protrusions. In  particular optimum 
values are found which yield maximum wall heat-transfer coefficients. 

1. Introduction 
One of the major problems occurring in the design of oil or gas-fired boilers is 

the realization of the optimum efficiency of the heat-transfer process under 
specified external conditions. Increases in the rate of heat transfer of such systems 
may be effected, as in common practice, by the attachment of h s ,  studs or other 
suitable protrusions to the wall of the boiler. The choice of such asimple expedient, 
however, raises the following question. What are the optimum values of the size 
and spacing of the protrusions? A complete answer to the above questions would 
involve many aspects of the particular heating system chosen but, nevertheless, 
gives some motivation to the present theoretical investigation. 

The problem to be considered is that of the motion which occurs when a fluid is 
contained between two corrugated walls, the surfaces of which are maintained at 
constant, but dissimilar, temperatures To and TI. Specifically attention will be 
given to sinusoidal walls defined by 

y = d{ 1 + E sin (wzld)), (1.1) 

where the axes of z and y are as given in figure 1. 
The parameters E and w are a measure of the height and spacing of the pro- 

trusions; their amplitude and wavelength being E d  and 2nd/w respectively. 
It is supposed that the convective motion is two-dimensional and that the flow 

is laminar. It will be further supposed that the cavity between the walls is of 
sufficienti extent for the flow to  be assumed to be fully developed and periodic in 
the x direction. 

This flow, in which the fluid rises up the hot wall and falls down the cool wall 
does not, of course, simulate the physical situation of a cooled up-flow occurring 
in the heating section of a boiler. Instead the above model is useful in a theoretical 
investigation into the effects of protrusions on a flow whose characteristics are 
known a priori. This particular flow configuration, in fact the case e = 0, corre- 
sponds to the flow between plane vertical walls and has been studied extensively 

3 F L M  49 
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by Ostrach (1964). In  this fully developed counterflow heat is transferred across 
the gap by conduction alone and the motion is entirely controlled by a balance of 
the viscous and buoyancy forces. 
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FIUURE 1. Geometrical configuration. 

2. Analysis 
Following Boussinesq (1903) the equations governing steady free convection 

are simplified by assuming that: (i) The temperature difference T - T, is small 
compared with the absolute temperature T,, which is taken to be the mean of the 
wall temperatures To and TI. (ii) All physical constants of the gas are independent 
of the temperature and allowance is made for variations in density only in the 
calculation of the body force. (iii) The fluid is incompressible and viscous heat 
dissipation may be neglected. 

I fu  and v denote the vertical and horizontal velocity components in the x and y 
directions, the equations expressing conservation of mass, momentum and 
energy are: 

au av -+- = 0,  
ax ay 

u-+v-- au au = -11,+yv2u+g- T-T, 
ax ay pax T m  ’ 
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and 

Here p is the density, v the kinematic viscosity and k the thermal diffusivity, all 
evaluated at the reference temperature Tm. p is the dynamic pressure and is the 
difference between the actual pressure and the hydrostatic pressure (in the 
absence of heating). Consequently, on employing the equation of state for a gas 

the buoyancy force term is as given on the right-hand side of (2.2), 
The boundary conditions for the channel shown in figure 1 are 

u = v = 0, T = Tl at y = -d(l+ssin(wx/d)), (2.6) 

u = v = 0, T = To at y = d(1 + ~ ~ i n ( ~ x / d ) ) .  (2.7) 

Equations (2.1)-(2.4) may be expressed in non-dimensional form by the 
introduction of the following variables 

We also define a dimensionless stream function $, with the aid of (2.1) by the 
relations 

v a$ 2, = --- v w 
a a y ’  d ax‘ u = -- 

The equations of motion then become, on elimination of p ,  

and 

(2.10) 

(2.11) 

where P = v/k is the Prandtl number and G = (gds/v2) (Tl-To)/(Tl+To) is a 
Grashof number based on half of the mean distance separating the walls. 

The appropriate boundary conditions, for all X ,  are 

a$/aX = a$/aY = 0, 0 = T 1 at Y = IC_ (l+ssin(wX)). (2.12) 

It is convenient to introduce the following transformation of the independent 

= X ,  7 = Y/[1 +esin (wX)]. (2.13) 

This affords great simplification of the boundary conditions since the space 
between the corrugated walls is transformed into the region bounded by the two 
planes 7 = k 1, for all 6. 

Expansions of $ and 0 in powers of E are a natural consequence of the above 

variables. 
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transformation. Since the flow has been assumed fully developed the zeroth-order 
functions will be independent of E,  and so we let 

and 

These expansions are inserted into the governing equations (2.10)-(2.12) and, 
after employing (2.13), coefficients of successive powers ofe are equated to zero. 

Zeroth-order equations in $, and 0, 
These are governed by 

d4$,/dy4 + Gde,/dV = 0, (2.16) 

and a2e,p72 = 0, (2.17) 

and are subject to the boundary conditions: 

$, = d@,,/dq = 0, 8, = T 1 a t  7 = 1, for all <. (2.18) 

Their solutions are 

This implies that the velocities occurring in the flow between plane vertical walls 
me of the order of gd2(T, - T,)/v(T, + To), giving a balance between the viscous and 
buoyaney forces as previously stated. 

$,(7) = &G(gz- 1)2 and 8,(7) = -7 .  (2.19) 

Pirst-order equations in and 0, 
Equaking terms of order e yields, on employing (2.19), the following equations: 

a*1 a 
V4$, + G7 - - &Q3 - 7) at 

ae 
a7 

(WJ 

i; sin ( W E )  [w4v2(q2 - 1) - 4w2(6v2 - 1) + 181 +G'= 1G 

+ ~ ~ W G ' G O S  (~6) (r3 - 7) [w2r2(r2 - 1) - 6q2 + 21, 

V28, - P - + 4G(r3 - 7) 

(2.20) 

(2.21) 
and r: 
The relevant boundary conditions are 

$, = a$,/&/ = 8, = 0 at 7 = k 1, for all 6. (2.22) 

Intuitively the flow may be assumed to be periodic in the x direction, which is 
equivalent to supposing that the flow can be analyzed as a Fourier series in that 
direction. It suffices to let 

$1 = fl(7) sin ( W E )  +fz(7) cos (4 (2.23) 

01 = Sl(7) sin ((4) + 92(7) cos (4). (2.24) and 

The resultant amplitudes, fi and gj, satisfy the equations 

f;,(D, W ,  G, fi, g i )  = & G [ w % ~ ( T ~ -  1) - 4 ~ ~ ( 6 7 ~ -  I) + 181, 

Lz(D, W ,  G, fi, gi) = 

MI(D, 0, G,fi, gj) = w27, 

(2.25) 

(2.26) 

(2.27) 

and M,(D, W ,  G,fj, gj) = 0, (2.28) 

- 7) [ o J ~ ~ ' ( v ~  - 1) - 6r2 + 21, 
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where D denotes the differential operator dldy. The boundary conditions are 

fj( k 1) = Ofj( 1) = gi( A 1) = 0. (2.29) 

This system constitutes a twelfth-order boundary-value problem since the 
homogeneous parts of the equation are given by 

L2 = ( D 2 - ~ 2 ) 2 f 2 + ~ G ~ f l + G D g Z - Q ~ G ( ~ 3 - ~ )  ( D 2 - ~ 2 ) f i ,  (2.31) 

Nl = (D2 - w2)g1 + W f 2  + 3G(V3 - V ) 9 2 ) ,  

4 = (0'- w2)g2 - ~P( f l+  @(q3 - 7)gl). 

(2.32) 

(2.33) 

The amplitudes f,. and g,. will, of course, be indeterminate if there exist eigen- 

L,. = N,. = 0, (2.34) 

which satisfy boundary conditions (2.29). The existence of eigensolutions of (2.34) 
has been verified numerically and these indicate a lowest critical (w - G) relation 
of the form 

F(w,  G) = 0. (2.35) 

and 

solutions of the coupled system 

In practice the critical values would also be expected to depend on the amplitude, 
as well as the frequency, of the corrugations. Such behaviour would most likely 
occur when e = O( 1) and may be assumed negligible for sufficiently small e .  

For values of w and G in the neighbourhood of (2.35) the first-order corrections 
will predict large increases in velocity and heat transfer; clearly this situation is 
unacceptable from a physical viewpoint. 

When (2.35) is satisfied the first-order terms become singular and these 
singularities will be propagated into the higher-order terms. Consequently the 
problem is then one of singular perturbation theory and the critical values 
correspond to a discontinuous transition from one mode of flow and heat transfer 
to another. Due to the complexity of the basic equations both numerical and 
singular perturbations approaches seem intractable. 

The failure of the expansion in the present analysis may be taken to  indicate 
the presence of an unstable flow r6gime. In  fact the critical relation (2.35) also 
pertains to the problem of marginal stability of the convective flow between plane 
vertical walls, maintained at temperatures To and Tl. The equations governing 
this flow are as given in (2.10) and (2.11) subject to the boundary conditions: 

a$/aX = a$/aY = 0, 8 = T 1 at Y = k 1, all X. (2.36) 

These yield the steady fully developed solution 
- - 
@ = &G(Y2-l)2, 8 = - Y .  (2.37) 

As is usual, in linear stability analysis, we set 

$ = $+$*, 6' = 8+8*. (2.38) 



38 A .  Watson and G. Poots 

Assuming that products of the disturbance components are negligible, the 
perturbation equations in $* and 8" reduce to 

(2.39) 
a$* G a ae* 
ax 6 ax ay 

V*$*+GY---(Y'- Y)-(V2$*)+G- = 0,  

(2.40) ax and 

The disturbance is now assumed to be periodic in the X direction and decomposi- 
tion into normal modes yields 

+* = w x ,  Y ) ,  e* = ux, Y ) ,  (2.41) 

where $, and 8, are given by (2.23) and (2.24) and satisfy the homogeneous 
system (2.34) subject to the conditions given in (2.29). Thus, as previously stated, 
the critical values for marginal stability correspond to those evaluated in (2.35). 

Xeeond-order equations in $2 and 8, 

Equating terms of order e2 gives 

I 1 1 ) + 4 0 ~ ( 8 7 ~ -  1) -9  

= 0,  (2.42) 
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and also 

a28, 

88 a7 
- cos (0[)2w, - - cos ( 2 4 )  - $027 = 0. 

39 

(2.43) 

The second-order perturbations, @2 and B,, can be expressed as 

@2 = f3(7)  +f4(7) sin (2w6) +f5(7) cos (2w8), 

8 2  = 93( , )  + 94(7) sin (206) + 95(7) cos (2w6), 

(2.44) 

(2.45) 

where the fj and gj satisfy an eighteenth-order system of inhomogeneous linear 
equations. Note that the equation for g3(7) does not contain the other second- 
order functions and is given by 

D2ga - O29l - ,t(w27 + w U 2 )  091 - 8 w W 2  + 91 Of2 - 92Wl -f1Dg2) 

- i?@'G(73 - 7)g2 - &w2, = 0, (2.46) 

to be solved subject to ga( 2 1) = 0. (2.47) 

For brevity the equations governing the remaining second-order amplitudes 
will not be stated. However, an important feature of these equations is their 
singular behaviour for values of w and G given by 

P(2w,G) = 0. (2.48) 

Moreover, investigation of the singular behaviour of the higher-order pertur- 
bation equations yields, for the mth-order terms, the more general relation 

F(mw,G) = 0. (2.49) 

The perturbation expansion, due to the complexity of further analysis, is 
truncated at this point. 

3. Numerical solutions 
The equations governing the first- and second-order amplitudes have been 

solved numerically for air (P = 0.72) for various values of w and G. Since these 
equations are linear the method of complementary functions may be employed, 
one particular integral and as many complementary functions as are necessary 
being found. The integration procedure used was Merson's modification of the 
Runge-Kutta process. Both these methods are described by Lance (1960, ch. 3). 

Solutions have been obtained for values of w in the range 0-5 to  2.0 and for values 
of G below 1000. No difficulty in performing the integrations was encountered 
except that they become more time consuming as G is increased. The method of 
complementary functions breaks down at a critical point and this provides a 
suitable criterion for their determination; the results are displayed in table 1. 
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Some of the figures shown here were produced on the line printer of the com- 
puter. Each function to be displayed is first scaled so that it lies in the range 0 to 
10. Contour bands, correct to the nearest integer, are then plotted with odd 
values being shaded by the appropriate digit and even values being left blank for 
clarity. 

w 0.50 0.75 1.00 1-25 1.40 1.50 1.75 
(min) 

G 1050.7 726.1 579.6 513.6 502.1 507.1 605.2 

TABLE 1. Critical (w - G )  values 

300 I I I I J 
0.0 0.5 1 .o 1 -5 2.0 

0 

FIGURE 2. Critical (w - G )  values. 

4. Results and discussion 
It has been established that the minimum critical Grashof number of flow 

between corrugated walls of small amplitude occurs at  G = 502.1 with w = 1.40 
which, as shown in $2y correspond to the critical values for marginal stability 
between plane vertical walls. Vest & Arpaci (1969), in a recent investigation on 
the stability of natural convection in a vertical slot, have shown that, for the 
relevant conduction rhgime, the critical values for marginal stability are w = 1.33 
and G = 492.5-t. Their method of solution entailed the replacement of @ and 8 by 
truncated series of orthogonal functions. The values quoted in the present paper 

t Note that in the work of Vest & Arpaci (1969) their wave-number, in our notation, is 2 0  
and their Grashof number is 16 B. 
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were found as a result of direct numerical integration of the first-order pertur- 
bation equations and are believed to be more reliable. 

The perturbation expansion in the present problem yields critical curves of the 
form 

F(mo,G) = 0 (m = 1)2)  ...), 

FIGURE 3. (a) $l plot and (b) O1 plot for o = 1.5 and G = 200. 
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which indicate the possible existence of instabilities in the flow for values of w 
and G above the union of these curves (see figure 2). For this reason a description 
of the numerical results will be confined to the region below this curve. 

FIGURE 4. (a) $2 plot and ( b )  8, plot for w = 1-5 and G = 200. 
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Velocity and thermal prO$k?5 
Before examining the stream function and temperature distribution it is advan- 
tageous to examine the computed perturbations and (@2,S2) for, say, 
w = 1.5 and various G .  For convenience all of the plots shown embrace two 
complete wavelengths of the wall geometry. 

FIGURE 5. (a) @ plot and ( b )  0 plot for E = 0.15, o = 1.5 and G = 100. 
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The main effect of increasing the Grashof number was found to be one of 
magnitude, since the shapes of the profiles are nearly identical The case of 
C = 200 and w = 1.5 is dispIayed in figures 3 and 4 and in table 2 maximum and 
minimumvalues of the perturbation functions are given. It is of interest to  
mention that the shape of the components $, and 8, in the next mode region 

FIGURE 6. (a) 11. plot and (b )  0 plot for E = 0.15, o = 1.5 and C = 200. 
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(G > 500) are of the same art form as those displayed, but the relative positions 
of the maximum and minimum values are interchanged. 

In  the following isothermals and streamlines are discussed for the typical case 
w = 1.5 and E = 0.15 for various G .  

For small G the isothermals will be on contours parallel to the walls, with a slow 
flow wrapping itself smoothly around the corrugated boundaries. In this case the 

FIGURE 7. (a) 9 plot and ( b )  19 plot for E = 0.15, o = 1.5 and G = 300. 
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mechanism governing the flow and heat transfer is, as in the case of smooth walls, 
controlled by a balance of the viscous and body forces and heat is transferred by 
conduction alone. 

On increasing the Grashof number the first effects of the protrusions are seen in 
the appearance of vortices symmetrically placed in the cavity; see for example 
figure 5 ( a )  for G = 100. At this Grashof number heat transfer by convection is still 
unimportant as seen from figure 5 (b ) .  

4 

50 f 4-29 f 0.88 - 3.67 & 0.33 

100 f 8.27 If: 1-50 - 16.71 1.36 
0.00 

0.00 

150 f 12.54 -t 1.95 - 43.80 2.78 

200 18.03 f 2.44 - 96.34 & 4.94 

250 f 26.00 rt 3.12 - 207.1 & 9.00 

300 f 38.60 f 4.19 - 486.4 f 17.66 

0.00 

0.00 

0.0 

0.0 

TABLE 2. Maximum and minimum of perturbation functions 

As G is further increased, resulting in higher fluid velocities near the walls, the 
vortex motion becomes more dominant (see figure 6(a)  for G = 200) and this 
resultis in an increase in the role played by convection in the heat-transfer 
process. The isothermals thus begin totwist, as can be seen clearly from figure 6 (b ) ,  
hot isothermals being displaced towards the cold wall and vice-versa. 

It is now clear from figure 7 (a ) ,  for G = 300, that the effects of the curvature of 
the walls in the vicinity of the neck is to cause the fluid to break away. This 
results in an almost stagnant region within the fluid which, when driven by the 
primary vortices, produces a weak secondary vortex. In  this region conduction 
effects, as seen from figure 7 (b) clearly predominate. However the isothermals 
are considerably distorted in the vicinity of the primary vortex leading to marked 
increases in the wall heat-transfer rates. 

It thus appears feasible that, for G > 300, further distortion of the isothermals 
will occur. It is clear from table 2 ,  however, that the convergence of the series 
(2.14) and (2.15) is doubtful for G > 300. 

Heat-transfer coeficients 
Finally the effects of variation in w and G on the wall heat flux are examined. 
Since the thermal field is periodic it is only necessary to consider the integrated 
heat flux over an area defined by unit width of wall, in a direction perpendicular 
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t o  the flow, and over one wavelength 2ndlw of the wall. The integrated heat flux 
at the wall 7 = 1 is defined, for fixed G, by 

where K is the thermal conductivity. 

\w 
G\ 
50 

100 
150 
200 
250 
300 

0.50 0.75 1.00 1.25 1.50 1.75 2.00 

0.878 1.200 1.480 1.666 1.751 1.758 1.725 
1.741 2.611 3.269 3.638 3.698 3.491 3.127 
2.842 4.220 5-290 5.967 6.091 5.612 4.732 
3.978 5.875 7.640 9-065 9.524 8.616 6.772 
5.095 7.748 10.92 14.15 15.59 13.70 9.760 
6.235 10.17 16-26 23.98 28.11 23.35 14.40 

TABLE 3. Fraction increase in heat flux : values of N,/@ 

600 - 

400 

G 

200 

1 I I 
0.5 1 -0 1.5 2-0 

w 

FIGURE 8. Percentage increase in heat transfer for E = 0.15. 

In  terms of the dimensionless variables 

since the wall = 1 is an isothermal. Expanding the above in powers of e yields 



48 

The dimensionless number N,, defined by 

A .  Watson and G. Poots 

is used to compare the heat flux with that for the reference case E = 0 and is the 
fractional increase in heat flux. Clearly, neglecting terms of order s4, 

In  table 3 values of NJe2 are given for G = 50 (50) 300 and w = 0.50 (0.25) 2.00. 
In  figure 8 percentage increases in heat transfer are displayed for the case E = 0.15. 

Considerable changes in the percentage increase in heat transfer may be 
observed in figure 8, being much more marked for values of G near the critical 
value. For a given increase in the heat-transfer rate the process of heat transfer 
between the walls will be most efficient at the lowest possible value of the Grashof 
number. The optimum values of (w, G) are thus given by the locus of the minimum 
of the (w,  C) versus N, curves. This locus has been indicated in figure 8 by the 
dashed curve. 

One of the authors (A. W.) is indebted to the Science Research Council for a 
maintenance grant. 
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